New high-performance lithium-ion battery ‘top candidate’ for electric cars


Scientists are reporting development of an advanced lithium-ion battery that is ideal for powering the electric vehicles now making their way into dealer showrooms. The new battery can store large amounts of energy in a small space and has a high rate capacity, meaning it can provide current even in extreme temperatures. A report on this innovation appears in ACS’ Journal of the American Chemical Society.

Bruno Scrosati, Yang-Kook Sun, and colleagues point out that consumers have a great desire for electric vehicles, given the shortage and expense of petroleum. But a typical hybrid car can only go short distances on electricity alone, and they hold less charge in very hot or very cold temperatures. With the government push to have one million electric cars on U.S. roads by 2015, the pressure to solve these problems is high. To make electric vehicles a more realistic alternative to gas-powered automobiles, the researchers realized that an improved battery was needed.

The scientists developed a high-capacity, nanostructured, tin-carbon anode, or positive electrode, and a high-voltage, lithium-ion cathode, the negative electrode. When the two parts are put together, the result is a high-performance battery with a high energy density and rate capacity. “On the basis of the performance demonstrated here, this battery is a top candidate for powering sustainable vehicles,” the researchers say.

In this paper we report the study of a high capacity Sn−C nanostructured anode and of a high rate, high voltage Li[Ni0.45Co0.1Mn1.45]O4  spinel cathode. We have combined these anode and cathode materials in an advanced lithium ion battery that, by exploiting this new chemistry, offers excellent performances in terms of cycling life, i.e., ca. 100 high rate cycles, of rate capability, operating at 5C and still keeping more than 85% of the initial capacity, and of energy density, expected to be of the order of 170 Wh kg−1. These unique features make the battery a very promising energy storage for powering low or zero emission HEV or EV vehicles.

The authors acknowledge funding from WCU (World Class University) program through the Korea Science and Engineering Foundation.

ARTICLE FOR IMMEDIATE RELEASE “An Advanced Lithium Ion Battery Based on High Performance Electrode Materials”

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ja110522x

CONTACT:
Bruno Scrosati, Ph.D.
Department of Chemistry
University of Rome Sapienza
00185
Rome, Italy
Tel: +39 06-4462866
Fax: +39 06-491769
Email: bruno.scrosati@uniroma1.it

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society

Advertisements
This entry was posted in Uncategorized and tagged , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s